Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 29(3): e13387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502109

RESUMO

Problem alcohol drinking continues to be a substantial cost and burden. In addition, alcohol consumption in women has increased in recent decades, and women can have greater alcohol problems and comorbidities. Thus, there is a significant need for novel therapeutics to enhance sex-specific, individualized treatment. Heart rate (HR) and HR variability (HRV) are of broad interest because they may be both biomarkers for and drivers of pathological states. HRV reflects the dynamic balance between sympathetic (SNS, 'fight or flight') and parasympathetic (PNS, 'rest and digest') systems. Evidence from human studies suggest PNS predominance in women and SNS in men during autonomic regulation, indicating the possibility of sex differences in risk factors and physiological drivers of problem drinking. To better understand the association between HRV sex differences and alcohol drinking, we examined whether alcohol consumption levels correlated with time domain HRV measures (SDNN and rMSSD) at baseline, at alcohol drinking onset, and across 10 min of drinking, in adult female and male Wistar rats. In particular, we compared both HRV and HR measures under alcohol-only and compulsion-like conditions (alcohol + 10 mg/L quinine), because compulsion can often be a significant barrier to treatment of alcohol misuse. Importantly, previous work supports the possibility that different HRV measures could be interpreted to reflect PNS versus SNS influences. Here, we show that females with higher putative PNS indicators at baseline and at drinking onset had greater alcohol consumption. In contrast, male intake levels related to increased potential SNS measures at drinking onset. Once alcohol was consumed, HR predicted intake level in females, perhaps a pharmacological effect of alcohol. However, HRV changes were greater during compulsion-like intake versus alcohol-only, suggesting HRV changes (reduced SNS in females, reduced PNS and increased HR in males) specifically related to aversion-resistant intake. We find novel and likely clinically relevant autonomic differences associated with biological sex and alcohol drinking, suggesting that different autonomic mechanisms may promote differing aspects of female and male alcohol consumption.


Assuntos
Alcoolismo , Caracteres Sexuais , Humanos , Adulto , Ratos , Feminino , Animais , Masculino , Frequência Cardíaca , Ratos Wistar , Consumo de Bebidas Alcoólicas , Etanol/farmacologia
2.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242696

RESUMO

Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.


Assuntos
Consumo de Bebidas Alcoólicas , Motivação , Humanos , Ratos , Masculino , Animais , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Paladar , Comportamento Animal
3.
Alcohol ; 115: 79-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286210

RESUMO

Excessive intake plays a significant role in the development of alcohol use disorder and impacts 15 million Americans annually, with approximately 88 000 dying from alcohol related deaths. Several facets we contribute to alcohol use disorder include impulsivity, motivation, and attention. Previous studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar, but recently we have published using 10% alcohol as the reward. This study analyzed 48 mice that were trained to respond for alcohol in the 5-Choice. All mice distributed and analyzed first by alcohol preference and then by consumption. Here, we became interested in a new classification called "engagement". High-engaged and low-engaged mice were determined by the number of correct responses during final Late-Stage training sessions. Interestingly, during Early-Stage training, the mice began to separate themselves into two groups based on their interaction with the task. Throughout both training stages, high-engaged mice displayed a greater number of trials and correct responses, as well as a lower percentage of omissions compared to low-engaged mice. Following three weeks of intermittent access homecage drinking, low-engaged mice showed greater increase in perseverative responding relative to high-engaged. Additionally, low-engaged mice decreased their reward and correct latencies compared to high-engaged mice suggesting an increase in motivation for alcohol. Overall, engagement analysis presents two clearly different groups, with only one being motivated to work for alcohol. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand alcohol use disorder.


Assuntos
Alcoolismo , Humanos , Camundongos , Animais , Tempo de Reação , Etanol , Consumo de Bebidas Alcoólicas/genética , Atenção
4.
Front Psychiatry ; 14: 1244389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025424

RESUMO

Introduction: Mental health conditions remain a substantial and costly challenge to society, especially in women since they have nearly twice the prevalence of anxiety disorders. However, critical mechanisms underlying sex differences remain incompletely understood. Measures of cardiac function, including heart rate (HR) and HR variability (HRV), reflect balance between sympathetic (SNS) and parasympathetic (PNS) systems and are potential biomarkers for pathological states. Methods: To better understand sex differences in anxiety-related autonomic mechanisms, we examined HR/HRV telemetry in food-restricted adult rats during novelty suppression of feeding (NSF), with conflict between food under bright light in the arena center. To assess HRV, we calculated the SDNN (reflective of both SNS and PNS contribution) and rMSSD (reflective of PNS contribution) and compared these metrics to behaviors within the anxiety task. Results: Females had greater HR and lower SNS indicators at baseline, as in humans. Further, females (but not males) with higher basal HR carried this state into NSF, delaying first approach to center. In contrast, males with lower SNS measures approached and spent more time in the brightly-lit center. Further, females with lower SNS indicators consumed significantly more food. In males, a high-SNS subpopulation consumed no food. Among consumers, males with greater SNS ate more food. Discussion: Together, these are congruent with human findings suggesting women engage PNS more, and men SNS more. Our previous behavior-only work also observed female differences from males during initial movement and food intake. Thus, high basal SNS in females reduced behavior early in NSF, while subsequent reduced SNS allowed greater food intake. In males, lower SNS increased engagement with arena center, but greater SNS predicted higher consumption. Our findings show novel and likely clinically relevant sex differences in HRV-behavior relationships.

6.
J Neurosci ; 39(6): 1030-1043, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30530860

RESUMO

The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Hormônio Liberador da Corticotropina/genética , Rede Nervosa/fisiopatologia , Animais , Ansiedade/psicologia , Comportamento Animal , Corticosterona/metabolismo , Relações Interpessoais , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/fisiopatologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
7.
Nat Commun ; 9(1): 5211, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523254

RESUMO

Locus coeruleus (LC) neurons in the brainstem have long been associated with attention and arousal. Optogenetic stimulation of LC-NE neurons induces immediate sleep-to-wake transitions. However, LC neurons also secrete other neurotransmitters in addition to NE. To interrogate the role of NE derived from the LC in regulating wakefulness, we applied in vivo cell type-specific CRISPR/Cas9 technology to disrupt the dopamine beta hydroxylase (dbh) gene selectively in adult LC-NE neurons. Unilateral dbh gene disruption abolished immediate arousal following optogenetic stimulation of LC. Bilateral LC-specific dbh disruption significantly reduced NE concentration in LC projection areas and reduced wake length even in the presence of salient stimuli. These results suggest that NE may be crucial for the awakening effect of LC stimulation and serve as proof-of-principle that CRISPR gene editing in adult neurons can be used to interrogate gene function within genetically-defined neuronal circuitry associated with complex behaviors.


Assuntos
Sistemas CRISPR-Cas , Dopamina beta-Hidroxilase/genética , Locus Cerúleo/metabolismo , Vigília/genética , Animais , Dopamina beta-Hidroxilase/metabolismo , Estimulação Elétrica , Feminino , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Neurônios/metabolismo , Neurônios/fisiologia , Norepinefrina/metabolismo , Sono/genética , Sono/fisiologia , Vigília/fisiologia
8.
Alcohol ; 55: 9-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27788780

RESUMO

Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 µM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine-resistant alcohol drinking patterns, this model provides a simple, quick, and robust method for uncovering the mechanisms that promote aversion-resistant consumption.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Aprendizagem da Esquiva/fisiologia , Comportamento de Escolha/fisiologia , Etanol/administração & dosagem , Motivação/fisiologia , Paladar/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinina/administração & dosagem , Paladar/efeitos dos fármacos
9.
Sci Rep ; 6: 32937, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27596561

RESUMO

There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine's actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4ß2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward.


Assuntos
Habenula/química , Neurônios/fisiologia , Nicotina/farmacologia , Terminações Pré-Sinápticas/fisiologia , Receptores Nicotínicos/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos Sprague-Dawley , Potenciais Sinápticos/efeitos dos fármacos
10.
Neuropharmacology ; 110(Pt A): 431-437, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27523303

RESUMO

Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 µM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin + quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs.


Assuntos
Dissuasores de Álcool/farmacologia , Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Benzoxazóis/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Antagonistas dos Receptores de Orexina/farmacologia , Ureia/análogos & derivados , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/metabolismo , Transtornos Relacionados ao Uso de Álcool/metabolismo , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Comportamento Compulsivo/metabolismo , Relação Dose-Resposta a Droga , Isoquinolinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Naftiridinas , Receptores de Orexina/metabolismo , Piridinas/farmacologia , Quinina , Ureia/farmacologia
11.
Neuropsychopharmacology ; 40(10): 2357-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25801502

RESUMO

There is considerable interest in NMDAR modulators to enhance memory and treat neuropsychiatric disorders such as addiction, depression, and schizophrenia. D-serine and D-cycloserine, the NMDAR activators at the glycine site, are of particular interest because they have been used in humans without serious adverse effects. Interestingly, D-serine also inhibits some NMDARs active at hyperpolarized potentials (HA-NMDARs), and we previously found that HA-NMDARs within the nucleus accumbens core (NAcore) are critical for promoting compulsion-like alcohol drinking, where rats consume alcohol despite pairing with an aversive stimulus such as quinine, a paradigm considered to model compulsive aspects of human alcohol use disorders (AUDs). Here, we examined the impact of D-serine and D-cycloserine on this aversion-resistant alcohol intake (that persists despite adulteration with quinine) and consumption of quinine-free alcohol. Systemic D-serine reduced aversion-resistant alcohol drinking, without altering consumption of quinine-free alcohol or saccharin with or without quinine. Importantly, D-serine within the NAcore but not the dorsolateral striatum also selectively reduced aversion-resistant alcohol drinking. In addition, D-serine inhibited EPSCs evoked at -70 mV in vitro by optogenetic stimulation of mPFC-NAcore terminals in alcohol-drinking rats, similar to reported effects of the NMDAR blocker AP5. Further, D-serine preexposure occluded AP5 inhibition of mPFC-evoked EPSCs, suggesting that D-serine reduced EPSCs by inhibiting HA-NMDARs. Systemic D-cycloserine also selectively reduced intake of quinine-adulterated alcohol, and D-cycloserine inhibited NAcore HA-NMDARs in vitro. Our results indicate that HA-NMDAR modulators can reduce aversion-resistant alcohol drinking, and support testing of D-serine and D-cycloserine as immediately accessible, FDA-approved drugs to treat AUDs.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento Compulsivo/tratamento farmacológico , Comportamento Compulsivo/etiologia , Ciclosserina/uso terapêutico , Serina/uso terapêutico , Animais , Etanol/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/citologia , Técnicas In Vitro , Masculino , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Sacarina/metabolismo , Valina/análogos & derivados , Valina/farmacologia
12.
Front Neurosci ; 9: 487, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733798

RESUMO

Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.

13.
Alcohol ; 48(3): 253-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24731992

RESUMO

Continued seeking and drinking of alcohol despite adverse legal, health, economic, and societal consequences is a central hallmark of human alcohol use disorders. This compulsive drive for alcohol, defined by resistance to adverse and deleterious consequences, represents a major challenge when attempting to treat alcoholism clinically. Thus, there has long been interest in developing pre-clinical rodent models for the compulsive drug use that characterizes drug addiction. Here, we review recent studies that have attempted to model compulsive aspects of alcohol and cocaine intake in rodents, and consider technical and conceptual issues that need to be addressed when trying to recapitulate compulsive aspects of human addiction. Aversion-resistant alcohol intake has been examined by pairing intake or seeking with the bitter tastant quinine or with footshock, and exciting recent work has used these models to identify neuroadaptations in the amygdala, cortex, and striatal regions that promote compulsive intake. Thus, rodent models do seem to reflect important aspects of compulsive drives that sustain human addiction, and will likely provide critical insights into the molecular and circuit underpinnings of aversion-resistant intake as well as novel therapeutic interventions for compulsive aspects of addiction.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Comportamento Compulsivo , Modelos Animais , Tonsila do Cerebelo/fisiologia , Animais , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Quinina/farmacologia , Ratos , Paladar
14.
PLoS One ; 8(7): e68300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23869214

RESUMO

Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.


Assuntos
Regulação da Expressão Gênica , Receptores Nicotínicos/fisiologia , Área Tegmentar Ventral/metabolismo , Acetilcolina/farmacologia , Animais , Proteínas de Bactérias/análise , Técnicas de Introdução de Genes , Técnicas In Vitro , Proteínas Luminescentes/análise , Masculino , Camundongos , Camundongos Transgênicos , Nicotina/farmacologia , Técnicas de Patch-Clamp , Receptores Nicotínicos/análise , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
15.
Nat Neurosci ; 16(8): 1094-100, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817545

RESUMO

Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake.


Assuntos
Dissuasores de Álcool/farmacologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/fisiopatologia , Resistência a Medicamentos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Quinina/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Tonsila do Cerebelo/química , Animais , Proteínas de Bactérias/análise , Córtex Cerebral/química , Condicionamento Operante , Etanol/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Halorrodopsinas/análise , Proteínas Luminescentes/análise , Masculino , Optogenética , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Córtex Pré-Frontal/química , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Valina/análogos & derivados , Valina/farmacologia
16.
PeerJ ; 1: e61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23646281

RESUMO

The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a) showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell), a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

17.
Nature ; 496(7445): 359-62, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23552889

RESUMO

Loss of control over harmful drug seeking is one of the most intractable aspects of addiction, as human substance abusers continue to pursue drugs despite incurring significant negative consequences. Human studies have suggested that deficits in prefrontal cortical function and consequential loss of inhibitory control could be crucial in promoting compulsive drug use. However, it remains unknown whether chronic drug use compromises cortical activity and, equally important, whether this deficit promotes compulsive cocaine seeking. Here we use a rat model of compulsive drug seeking in which cocaine seeking persists in a subgroup of rats despite delivery of noxious foot shocks. We show that prolonged cocaine self-administration decreases ex vivo intrinsic excitability of deep-layer pyramidal neurons in the prelimbic cortex, which was significantly more pronounced in compulsive drug-seeking animals. Furthermore, compensating for hypoactive prelimbic cortex neurons with in vivo optogenetic prelimbic cortex stimulation significantly prevented compulsive cocaine seeking, whereas optogenetic prelimbic cortex inhibition significantly increased compulsive cocaine seeking. Our results show a marked reduction in prelimbic cortex excitability in compulsive cocaine-seeking rats, and that in vivo optogenetic prelimbic cortex stimulation decreased compulsive drug-seeking behaviours. Thus, targeted stimulation of the prefrontal cortex could serve as a promising therapy for treating compulsive drug use.


Assuntos
Comportamento Aditivo/fisiopatologia , Cocaína/farmacologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Animais , Comportamento Aditivo/induzido quimicamente , Comportamento Aditivo/terapia , Channelrhodopsins , Cocaína/administração & dosagem , Eletrochoque , Sistema Límbico/citologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Sistema Límbico/fisiopatologia , Masculino , Optogenética , Estimulação Luminosa , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Autoadministração , Estimulação Química
18.
J Neurosci ; 32(26): 9023-34, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745501

RESUMO

Dysfunctions of dopaminergic homeostasis leading to either low or high dopamine (DA) levels are causally linked to Parkinson's disease, schizophrenia, and addiction. Major sites of DA synthesis are the mesencephalic neurons originating in the substantia nigra and ventral tegmental area; these structures send major projections to the dorsal striatum (DSt) and nucleus accumbens (NAcc), respectively. DA finely tunes its own synthesis and release by activating DA D2 receptors (D2R). To date, this critical D2R-dependent function was thought to be solely due to activation of D2Rs on dopaminergic neurons (D2 autoreceptors); instead, using site-specific D2R knock-out mice, we uncover that D2 heteroreceptors located on non-DAergic medium spiny neurons participate in the control of DA levels. This D2 heteroreceptor-mediated mechanism is more efficient in the DSt than in NAcc, indicating that D2R signaling differentially regulates mesolimbic- versus nigrostriatal-mediated functions. This study reveals previously unappreciated control of DA signaling, shedding new light on region-specific regulation of DA-mediated effects.


Assuntos
Dopamina/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores de Dopamina D2/metabolismo , Sinapses/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Biofísica , Cromatografia Líquida de Alta Pressão/métodos , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Técnicas Eletroquímicas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Ácido Homovanílico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Terminações Pré-Sinápticas/efeitos dos fármacos , Quimpirol/farmacologia , RNA Mensageiro/metabolismo , Tempo de Reação/genética , Receptores de Dopamina D2/genética , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos
19.
Neuropsychopharmacology ; 37(1): 163-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22030714

RESUMO

Drug addiction represents a major social problem where addicts and alcoholics continue to seek and take drugs despite adverse social, personal, emotional, and legal consequences. A number of pharmacological compounds have been tested in human addicts with the goal of reducing the level or frequency of intake, but these pharmacotherapies have often been of only moderate efficacy or act in a sub-population of humans. Thus, there is a tremendous need for new therapeutic interventions to treat addiction. Here, we review recent interesting studies focusing on gamma-aminobutyric acid receptors, voltage-gated ion channels, and transcranial magnetic stimulation. Some of these treatments show considerable promise to reduce addictive behaviors, or the early clinical studies or pre-clinical rationale suggest that a promising avenue could be developed. Thus, it is likely that within a decade or so, we could have important new and effective treatments to achieve the goal of reducing the burden of human addiction and alcoholism.


Assuntos
Alcoolismo/metabolismo , Alcoolismo/terapia , Canais Iônicos/fisiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/terapia , Estimulação Magnética Transcraniana/métodos , Ácido gama-Aminobutírico/fisiologia , Alcoolismo/fisiopatologia , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
20.
Neuron ; 71(2): 278-90, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21791287

RESUMO

D(1) dopamine receptors are primary mediators of dopaminergic signaling in the CNS. These receptors internalize rapidly following agonist-induced activation, but the functional significance of this process is unknown. We investigated D(1) receptor endocytosis and signaling in HEK293 cells and cultured striatal neurons using real-time fluorescence imaging and cAMP biosensor technology. Agonist-induced activation of D(1) receptors promoted endocytosis of receptors with a time course overlapping that of acute cAMP accumulation. Inhibiting receptor endocytosis blunted acute D(1) receptor-mediated signaling in both dissociated cells and striatal slice preparations. Although endocytic inhibition markedly attenuated acute cAMP accumulation, inhibiting the subsequent recycling of receptors had no effect. Further, D(1) receptors localized in close proximity to endomembrane-associated trimeric G protein and adenylyl cyclase immediately after endocytosis. Together, these results suggest a previously unanticipated role of endocytosis, and the early endocytic pathway, in supporting rapid dopaminergic neurotransmission.


Assuntos
Dopamina/metabolismo , Endocitose/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Adenilil Ciclases/farmacologia , Animais , Benzazepinas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Células Cultivadas , Corpo Estriado/citologia , AMP Cíclico/farmacologia , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Citometria de Fluxo/métodos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Hidrazonas/farmacologia , Microscopia de Fluorescência/métodos , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de Dopamina D1/genética , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...